Table of Contents

	Page
Glossary	vii
Chapter 1 - Introduction and Guide to Using this	
Handbook	1-1
1.1 Purpose of this Handbook	1-1
1.2 Background on the Urban Runoff Program	1-2
1.3 How to Use this Handbook	1-2
1.4 Precedence	1-4
Chapter 2 - Background/Regulatory Requirements	2-1
2.1 Stormwater Issues in Developed Areas	2-1
2.2 Post-Construction Stormwater Controls	2-3
2.3 Municipal Stormwater Permit Requirements	2-6
Chapter 3 - Preparing Permit Application Submittal	s3-1
3.1 The Development Review Process	3-1
3.2 How to Prepare a Stormwater Management Plan	3-2
3.3 Preparing for Construction	3-19
3.4 Simple Instructions for Small Sites	3-19
Chapter 4 - Site Design Measures	4-1
4.1 Using Self-Treating Areas	4-2
4.2 Self-Retaining Areas	4-4
4.3 Reducing the Size of Impervious Areas	4-7
4.4 Rainwater Harvesting and Use	4-8
4.5 Tree Preservation and Planting	4-10
4.6 Site Design Requirements for Small Projects	4-14

TABLE OF CONTENTS

Chapter 5 - General Technical Guidance for Treatment	
Measures	5 - 1
5.1 Hydraulic Sizing Criteria	5-1
5.2 Getting Runoff into Treatment Measures	5-9
5.3 Infiltration Guidelines	5-14
5.4 Underdrains	5-14
5.5 Bypassing High Flows	5-15
5.6 Using Treatment Trains	5-17
5.7 Mosquito Control	5-18
5.8 Plant Selection and Maintenance	5-18
Chapter 6 -Technical Guidance for Stormwater Treatme	
and Site Design Measures	
6.1 Bioretention Area	6-3
6.2 Flow-Through Planter	6-10
6.3 Tree Well Filter	6-16
6.4 Infiltration Trench	6-22
6.5 Subsurface Infiltration System	
6.6 Rainwater Harvesting and Use	6-28
6.7 Media Filter	6-33
6.8 Extended Detention Basin	6-37
6.9 Green Roofs	6-41
6.10 Pervious Pavement	6-43
6.11 Grid Pavements	6-49
Chapter 7 - Hydromodification Management Measures	7 - 1
7.1 What is Hydromodification	7-1
7.2 Hydromodification Management Requirements	7-3
7.3 Which Projects Need to Implement HM?	7-5
7.4 Selecting HM Controls	7-6
7.5 Designing Flow Duration Controls	7-7
7.6 HM Control Submittals for Review	7-12
7.7 When On-site HM is Impracticable	7-13
Chapter 8 - Operation and Maintenance	8 - 1
8.1 Summary of O&M Requirements	8-1
8.2 Preparing Maintenance-Plans	8-4

Chapter 9 - Alternative Compliance 9-1
9.1 What is Alternative Compliance?9-1
9.2 Categories of Alternative Compliance9-1
9.3 Offsite or Regional Project Completion Deadlines9-2
9.4 Alternative Compliance Provision Effective Dates9-2
References R-1
Appendix A - Infiltration Guidelines
Appendix B - Sizing Criteria Worksheets and Examples
Appendix C - Biotreatment Soil Mix Specifications
Appendix D - Plant List and Planting Guidance for Landscape Based Stormwater Measures
Appendix E - Hydromodification Management Requirements
Appendix F - Mosquito Control Guidelines
Appendix G - Operation & Maintenance Document Templates
Appendix H - Model Conditions of Approval for Stormwater Quality
Appendix I - Guidance on Determining Feasibility and Sizing of Rainwater Harvesting Systems
Appendix J - Special Projects
Appendix K - Standard Specifications for Lot-Scale Measures for Small Projects

TABLE OF CONTENTS PAGE iii

List of Tables

		Page
Table 2-1:	Stormwater Treatment and Site Design Measures Described	
	in Chapter 6	2-5
Table 2-2:	Projects Excluded from Provision C.3 Requirements	2-8
Table 3-1.	Stormwater Management Plan Checklist	3-3
Table 3-2.	Example Table of Stormwater Source Controls	3-11
Table 4-1.	Stormwater Treatment Credits for Interceptor Trees	4-11
Table 5-1.	Flow and Volume Based Treatment Measure Sizing Criteria	5-2
Table 5-2.	Reference Rain Gages	5-4
Table 5-3.	Flow-based Sizing Criteria Included in MRP Provision C.3.d	5-5
Table 5-4.	Estimated Runoff Coefficients for Various Surfaces During Small	
	Storms	5-6
Table 6-1.	Treatment and Site Design Measures Addressed in Chapter 6	6-1
Table 6-2.	Typical Water Quality Guidelines from the Texas Rainwater Harve	sting
	Manual	6-30
Table 7-1.	HM Applicability	7-5
Table 7-2.	HM Control Plan Checklist	7-12

List of Figures

Figure 2-1.	The Water Cycle	2-1
Figure 2-2.	Change in Volume of Stormwater Runoff after Development	2-2
Figure 2-3.	Creek with Natural Banks	2-3
Figure 2-4.	Creek Impacted by Hydromodification	2-3
Figure 3-1:	Excerpt from C.3 Data Form (Impervious Surface Calculation)	3-5
Figure 3-2.	Excerpt from C.3 Data Form (C.3 Applicability)	3-6
Figure 3-3.	Excerpt from C.3 Data Form (HM Applicability)	3-7
Figure 3-4.	Excerpt from C.3 Data Form (Site Design Measures)	3-8
Figure 3-5.	Stevens Creek Corridor Park in Cupertino includes turf block pavers in	
	parking lot	3-9
Figure 3-6.	A turf block fire lane in Mountain View	3-10

PAGE iv TABLE OF CONTENTS

Figure 3-7. Excerpt from C.3 Data Form (Source Controls)	.3-12
Figure 3-8. This landscaped area in San José also functions as a stormwater	
treatment area	.3-13
Figure 3-9. Excerpt from C.3 Data Form (Treatment and HM Controls)	.3-15
Figure 3-10. Excerpt from C.3 Data Form (Hydraulic Sizing Criteria)	.3-16
Figure 3-11. Excerpt from C.3 Data Form (O&M Information)	.3-18
Figure 3-12. Excerpt from C.3 Data Form (Construction General Permit Applicabili	ty)
	.3-19
Figure 4-1. Self-Treating Area Usage	4-3
Figure 4-2. Conventional Site Compared to Same Site with Self-Treating Areas	4-3
Figure 4-3. Schematic Diagram of a Site with Self-Treating Area	4-4
Figure 4-4 Schematic Drainage Plan for Site with a Self-Retaining Area	4-6
Figure 4-5. Example Self-Retaining Area Cross Section	4-6
Figure 4-6. Pervious paving at Mayfield Soccer Field in Palo Alto	4-7
Figure 4-7. Parking Lifts in Parking Garage, Berkeley	4-8
Figure 4-8. Rainwater Collecting at Mills College, Oakland	4-9
Figure 4-9. Pruneridge Towers, Campbell	.4-10
Figure 4-10. Silva Cells	.4-14
Figure 5-1. Cobbles stormwater treatment measure in San José	5-9
Figure 5-2. Photo of standard curb cut at parking lot rain garden	.5-10
Figure 5-3. Standard curb cut: section view	.5-10
Figure 5-4. Standard curb cut: plan view	.5-11
Figure 5-5. Photo of side wings of standard curb cut	.5-11
Figure 5-6. Standard curb cut with side wings: cut section view	.5-11
Figure 5-7. Standard curb cut with side wings: plan view	.5-12
Figure 5-8. Photo of Wheelstop Curb	.5-12
Figure 5-9. Opening between wheelstop curbs: section view	.5-12
Figure 5-10. Opening between wheelstop curbs: plan view	.5-13
Figure 5-11. Photo of Grated Curb Cut	.5-13
Figure 5-12. Grated curb cut: section view	.5-13
Figure 5-13. Grated curb cut: plan view	.5-14
Figure 5-14. Stepped manhole design	.5-16
Figure 5-15. StormGateTM flow splitter structure	.5-16
Figure 5-16. Detention Pond at a retirement center in Saratoga	.5-17
Figure 6-1. Bioretention area in office building parking lot, San José	6-3
Figure 6-2. Cross Section of a Bioretention Area (with Maximized Infiltration)	6-7
Figure 6-3. Cross Section of a Bioretention Area (side view)	6-8
Figure 6-4. Check Dam (plan view and profile)	6-8

TABLE OF CONTENTS

PAGE v

Figure 6-5. Cross Section of a Linear Bioretention Area (with Maximized Infiltration)6-9
Figure 6-6. Cross Section of Lined Bioretention Area (Infiltration Not Allowed)	. 6-9
Figure 6-7. Flow-through planters at Hampton Park residences in San Jose	6-10
Figure 6-8. Plan view of long, linear planter	6-13
Figure 6-9. Plan view of planter designed to disperse flows	6-13
Figure 6-10. Cross section A-A of flow-through planter, shows side view of	
underdrain	6-14
Figure 6-11. Cross section B-B of flow-through planter, shows cross section of	
underdrain	6-14
Figure 6-12. Half-buried, perforated flexible pipe	6-15
Figure 6-13. Vegetation partially concealing half-buried, perforated flexible pipe	6-15
Figure 6-14. Non-proprietary tree well filters in San José	6-16
Figure 6-15. Non-proprietary Tree Filter with Overflow Bypass	6-19
Figure 6-16. Schematic of a non-proprietary tree well filter	6-20
Figure 6-17. Proprietary tree well filter at an office building in San José	6-20
Figure 6-18. Schematic of modular suspended pavement system	6-21
Figure 6-19. Infiltration trench next to parking structure, Palo Alto	6-22
Figure 6-20. Infiltration Trench Section	6-24
Figure 6-21. Photo of subsurface retention/infiltration system installation under a	
parking lot	6-25
Figure 6-22. Rainwater is collected and used for flushing toilets at Mills College,	
Oakland	6-28
Figure 6-23. Filter Cartridge, Typically Used as Part of Array	6-33
Figure 6-24. Plan View, Filter Array in a Vault	6-36
Figure 6-25. Profile View, Filter Array in a Vault with a High Flow Bypass	6-36
Figure 6-26. Extended detention pond	6-37
Figure 6-27. Plan View, Typical Extended Detention Basin	6-39
Figure 6-28. Side view of riser, extended detention basin	6-40
Figure 6-29. Extensive green roof at the Casa Feliz Studios in San José	6-41
Figure 6-30. Green roof cross-section	6-42
Figure 6-31. Intensive Green Roof at Google, Mountain View	6-42
Figure 6-32. Parking Lot with Pervious Concrete, San José	6-43
Figure 6-33. Porous Asphalt Parking Lot, Stanford	6-43
Figure 6-34. Permeable Pavers, Palo Alto.	6-43
Figure 6-35. Typical Pervious Concrete Pavement	6-44
Figure 6-36. Typical Porous Asphalt Pavement	6-44
Figure 6-37. Typical Permeable Interlocking Concrete Pavement	6-44
Figure 6-38. PICP designed for partial infiltration, with underdrain	6-46

PAGE vi TABLE OF CONTENTS

Figure 6-39	Detail of underdrain in aggregate trench with upturned elbow	6-46
Figure 6-40). Turf block fire access at the Residence Inn in Los Altos	6-49
Figure 6-41	. Concrete Grid Pavement for Occasional Vehicular Use or for Emer	gency
	Access Lanes	6-49
Figure 6-42	2. Plastic Grid Pavement for Occasional Vehicular Use or for Emerge	ncy
	Access Lanes	6-50
Figure 7-1:	Stormwater Peak Discharges in Urban and Less Developed Watersheds	7-1
Figure 7-2.	Effects of Urbanization on the Local Hydrologic Cycle	7-2
Figure 7-3.	Variation in Rainfall Contribution to Different Components of the	
	Hydrological Cycle for Areas with Different Intensity of Urban	
	Development	7-2
Figure 7-4.	Schematic Flow Duration Control Pond and Flow Duration Curves	
	Matched by Varying Discharge Rates According to Detained Volume	e7-9
Figure 7-5.	Example of a Multi-purpose Detention Facility for HM Control	
	in San Jose	7-14
Figure 8-1.	Bioretention area at a shopping center in San Jose	8-6
Figure 8-2.	Flow Through Planter in the City of Emeryville	8-7
Figure 8-3.	Pervious asphalt directs water to an enlarged tree well filled with	
	engineered 'structural soil', San José	8-8
Figure 8-4.	Infiltration Trench at former Agilent site, Palo Alto	8-9
Figure 8-5.	Detention Pond at a retirement center in Saratoga	8-10
Figure 8-6.	Pervious asphalt, concrete and pavers at Stanford University	8-11

TABLE OF CONTENTS PAGE vii